These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of GLUT5 domains responsible for fructose transport. Author: Buchs AE, Sasson S, Joost HG, Cerasi E. Journal: Endocrinology; 1998 Mar; 139(3):827-31. PubMed ID: 9492009. Abstract: The domains responsible for the fructose specificity of GLUT5 were investigated by creating chimeras of GLUT5 with the selective glucose transporter GLUT3, which were expressed in Xenopus oocytes. 3-O-Methylglucose uptake of chimeric GLUT3-5 (M11; GLUT3 to the 11th transmembrane domain, GLUT5 to the carboxyl end) was similar to that of GLUT3, while fructose was not transported. Fructose uptake of chimeric GLUT5-3 (M3-5) to -5 (GLUT3 from the 3rd to 5th transmembrane domains, the rest GLUT5) was similar to that of GLUT5; no glucose was transported. Four chimeras transported neither fructose nor glucose: GLUT3-5 (M5; GLUT3 to the 5th transmembrane domain, GLUT5 to the carboxyl end), GLUT5-3 (M2; GLUT5 to the 2nd transmembrane domain, the rest GLUT3), GLUT5-3 (M3-11) to -5 (GLUT3 between the 3rd and 11th transmembrane domains, the rest GLUT5) and GLUT5-3 (M3-5) to -5-3 (M11; GLUT3 from the 3rd to 5th transmembrane domains and after the 11th transmembrane domain, the rest GLUT5). They, nevertheless, induced full-size proteins that were transported to the cell surface, as demonstrated by exofacial labeling with biotin. To conclude, the GLUT5 domain from the amino-terminus to the third transmembrane domain and that between the 5th and 11th transmembrane stretches seem to be necessary for fructose uptake.[Abstract] [Full Text] [Related] [New Search]