These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria.
    Author: Fernando KC, Gregory RB, Barritt GJ.
    Journal: Biochem J; 1998 Mar 15; 330 ( Pt 3)(Pt 3):1179-87. PubMed ID: 9494083.
    Abstract:
    The roles of a trimeric GTP-binding regulatory protein, protein kinase A and mitochondria in the regulation of store-activated (thapsigargin-stimulated) Ca2+ inflow in freshly-isolated rat hepatocytes were investigated. Rates of Ca2+ inflow were estimated by measuring the increase in the fluorescence of intracellular fura-2 following the addition of extracellular Ca2+ (Ca2+o) to cells incubated in the absence of added Ca2+o. Guanosine 5'-[gamma-thio]-triphosphate (GTP[S]) and AlF4(-) inhibited the thapsigargin-stimulated Ca2+o-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and this inhibition was prevented by the Rp diastereoisomer of adenosine 3',5'-(cyclic)phosphoro[thioate]. cAMP, forskolin and glucagon (half-maximal effect at 10 nM) mimicked inhibition of the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c by GTP[S], but had little effect on thapsigargin-induced release of Ca2+ from intracellular stores. Azide and carbonyl cyanide p-trifluoromethoxyphenylhydrazone inhibited the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c in the presence of increased cAMP (induced by glucagon). In contrast, Ruthenium Red markedly enhanced the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c in both the presence and absence of increased cAMP (induced by forskolin and dibutyryl cAMP). It is concluded that, in hepatocytes, protein kinase A regulates the disposition of Ca2+, which enters the cytoplasmic space through store-activated Ca2+ channels, by directing some of this Ca2+ to the mitochondria. The idea that caution should be exercised in using observed values of Ca2+o-induced increase in [Ca2+]c as estimates of rates of agonist-stimulated Ca2+ inflow is briefly discussed.
    [Abstract] [Full Text] [Related] [New Search]