These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of magnesium on calcium responses to vasopressin in vascular smooth muscle cells of spontaneously hypertensive rats.
    Author: Touyz RM, Laurant P, Schiffrin EL.
    Journal: J Pharmacol Exp Ther; 1998 Mar; 284(3):998-1005. PubMed ID: 9495860.
    Abstract:
    This study investigated the modulatory effect of magnesium (Mg++) on basal and agonist-stimulated intracellular free calcium (Ca++) concentration ([Ca++]i) in vascular smooth muscle cells from spontaneously hypertensive rats (SHR). Effects of increasing extracellular Mg++ concentration ([Mg++]e) on vasopressin (AVP)-induced [Ca++]i responses were determined in primary cultured unpassaged vascular smooth muscle cells from mesenteric and aortic vessels (representing resistance and conduit arteries, respectively) of Wistar Kyoto rats (WKY) and SHR. [Ca++]i was measured by fura-2 methodology. Underlying mechanisms for Mg++ actions were determined in Ca(++)-free buffer and in the presence of diltiazem (10(-6) M), an L-type Ca++ channel blocker. Basal and AVP-stimulated [Ca++]i responses were significantly increased (p < .05) in SHR (pD2 = 8.3 +/- 0.1, Emax = 532 +/- 14 nM for SHR; pD2 = 8.0 +/- 0.04, Emax = 480 +/- 15 nM for WKY). [Mg++]e dose-dependently reduced basal and agonist-induced [Ca++]i responses. High [Mg++]e (4.8 mM) attenuated [Ca++]i responses to AVP in WKY (Emax = 328 +/- 30 nM) and SHR (Emax = 265 +/- 27 nM) and normalized AVP-elicited hyper-responsiveness in SHR (pD2 in high [Mg++]e, 8.1 +/- 0.3 for SHR, 7.8 +/- 0.6 for WKY). Extracellular Ca++ withdrawal and diltiazem abolished the attenuating effects of high [Mg++]e in WKY but not in SHR. These findings demonstrate that Mg++ dose-dependently reduces [Ca++]i and that high [Mg++]e attenuates AVP-stimulated [Ca++]i responses and normalizes sensitivity to AVP in SHR. In WKY, Mg++ actions are dependent primarily on Ca++ influx through L-type Ca++ channels, whereas in SHR, the modulatory effects of [Mg++]e are mediated both by Ca++ influx through Ca++ channels and by intracellular Ca++ release.
    [Abstract] [Full Text] [Related] [New Search]