These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chondrocyte transplantation to articular cartilage explants in vitro. Author: Chen AC, Nagrampa JP, Schinagl RM, Lottman LM, Sah RL. Journal: J Orthop Res; 1997 Nov; 15(6):791-802. PubMed ID: 9497802. Abstract: The transplantation of chondrocytes has shown promise for augmenting the repair of defects in articular cartilage. This in vitro study examined the efficiency of the transplantation of bovine chondrocytes onto articular cartilage disks and the ability of the transplanted chondrocytes to subsequently synthesize and deposit proteoglycan. The radiolabeling of chondrocyte cultures with [3H]thymidine, followed by 4 days of chase incubation, resulted in the incorporation of 98% of the radiolabel into DNA (as assessed by susceptibility to DNase). At the end of the culture period, the [3H]DNA was stable, with a half-life of radioactivity loss into the medium of 73 days. With use of radiolabeled chondrocytes for quantitation, the efficiency of transplantation onto a cartilage substrate was 93 +/- 4% for seeding densities of as much as 650,000 cells per cm2 and a seeding duration of 1 hour. These findings were confirmed both by tracking cells stained with 5-chlormethylfluorescein diacetate and by quantitating DNA. During the 16 hours after seeding onto a cartilage substrate (in which the endogenous cells had been lysed by lyophilization), the transplanted cells synthesized sulfated proteoglycan in direct proportion to the number of cells seeded. Most (83%) of the newly synthesized proteoglycan was released into the medium rather than retained within the layer of transplanted cells and the recipient cartilage substrate. Comparative studies with lyophilized-rehydrated or live cartilage as the recipient substrate indicated a similar efficiency of chondrocyte seeding and proteoglycan synthesis by the seeded chondrocytes. The transplanted cells retained the chondrocyte phenotype, as judged by a high proportion of the [35S]macromolecules being in the form of aggrecan that was capable of aggregating with hyaluronan and link protein, as well as by immunostaining within and around the transplanted cells for type-II, but not type-I, collagen. These results indicate that the number of chondrocytes transplanted onto a cut cartilage surface greatly affects the level of matrix synthesis; this in turn may affect repair.[Abstract] [Full Text] [Related] [New Search]