These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Desensitization of formyl peptide receptors is abolished in calcium ionophore-primed neutrophils: an association of the ligand-receptor complex to the cytoskeleton is not required for a rapid termination of the NADPH-oxidase response.
    Author: Liu L, Harbecke O, Elwing H, Follin P, Karlsson A, Dahlgren C.
    Journal: J Immunol; 1998 Mar 01; 160(5):2463-8. PubMed ID: 9498791.
    Abstract:
    Binding of ligands to N-formyl peptide chemoattractant receptors exposed on human neutrophils generates signals in the cells that induce an activation of the superoxide anion producing NADPH-oxidase. Ligand binding is followed by a rapid association of the ligand-receptor complex with the cytoskeleton, a process leading to desensitization of the cells with respect to NADPH-oxidase activation. We show that neutrophils that have experienced an intracellular calcium rise obtained through interaction with the calcium-specific ionophore ionomycin are "primed" with respect to the FMLP-induced production of superoxide anions. Mobilization of FMLP receptors from intracellular pools is one well-known mechanism behind the primed response. Based on our finding that ionomycin-treated neutrophils could not be desensitized, we suggest that the lack of association between the ligand-receptor complex and the cytoskeleton is an additional priming mechanism. Since in vivo-exudated neutrophils, which also had mobilized intracellular organelles, could be desensitized, we suggest that the abolished desensitization in ionomycin-treated neutrophils is not due to an inability of newly recruited receptors to couple to the cytoskeleton. We show that a rapid termination of FMLP-induced superoxide anion production is obtained in both desensitizable and nondesensitizable neutrophils, suggesting that the desensitization phenomenon is of limited importance in the oxidase termination process.
    [Abstract] [Full Text] [Related] [New Search]