These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A single mutation disrupts the pH-dependent dimerization of glycinamide ribonucleotide transformylase.
    Author: Mullen CA, Jennings PA.
    Journal: J Mol Biol; 1998 Mar 06; 276(4):819-27. PubMed ID: 9500916.
    Abstract:
    Monomeric GART reversibly associates into a dimeric form as a function of decreasing solution pH. The transition is consistent with a three-proton transfer reaction with an apparent pKa near 7. We now report that a single mutation, which replaces a glutamic acid at position 70 in the dimer interface with alanine (E70A), disrupts the pH-dependent dimerization of GART based on dynamic light scattering and gel filtration studies. A comparison of data obtained from UV-absorbance difference spectroscopy for both the wild-type and mutant forms of GART indicates that a tyrosine residue(s) undergoes a change in solvent exposure over the pH range 6.55 to 8.19. A conformational change in tertiary structure that accompanies dimerization accounts for 60% of the observed optical difference, while the remaining 40% can be attributed to a pH-dependent process unrelated to dimerization. In addition, fluorescence studies of the mutant protein indicate that a pH-dependent change in tryptophan fluorescence exhibited by the wild-type protein is unrelated to quaternary structural changes and is likely a result of simple fluorescence quenching by nearby protonated histidine side-chains. Taken together, our results indicate that a single amino acid change at the dimer interface is sufficient to interrupt the highly specific, pH-dependent assembly reaction of GART, although pH-dependent conformational changes present in the wild-type protein also occur in E70A GART. This work is a first application of structure-based site-directed mutagenesis to the analysis of this pH-dependent assembly reaction.
    [Abstract] [Full Text] [Related] [New Search]