These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Author: Oelzner P, Müller A, Deschner F, Hüller M, Abendroth K, Hein G, Stein G. Journal: Calcif Tissue Int; 1998 Mar; 62(3):193-8. PubMed ID: 9501950. Abstract: In several studies on patients with rheumatoid arthritis, an association of bone loss with a persistently high disease activity has been found. The aim of our study was to investigate the relation between disease activity and serum levels of vitamin D metabolites, parathyroid hormone (PTH), and parameters of bone turnover in patients with rheumatoid arthritis. A total of 96 patients (83 women and 13 men) were divided into three groups according to disease activity measured by serum levels of C-reactive protein (CRP). In the whole group, serum levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (P < 0.001) and PTH (P < 0.05) were negatively correlated to disease activity. The urinary excretion of collagen crosslinks--pyridinoline (Pyd) (P < 0.001) and deoxypyridinoline (Dpd) (P < 0.05)--showed a positive correlation with disease activity. The inverse correlation between serum 1,25(OH)2D3 and disease activity was separately evident in patients with (P < 0.001) and without (P < 0.01) glucocorticoid treatment, in pre- (P < 0.01) and postmenopausal (P < 0.001) women, and in men (P < 0.01). 1,25(OH)2D3 and PTH serum levels were positively correlated to serum bone alkaline phosphatase (ALP) (P < 0.01). The results indicate that high disease activity in patients with rheumatoid arthritis is associated with an alteration in vitamin D metabolism and increased bone resorption. The decrease of 1,25(OH)2D3 levels in these patients may contribute to a negative calcium balance and inhibition of bone formation. Furthermore, low levels of 1,25(OH)2D3 as an endogenous immunomodulator suppressing activated T cells and the proliferation of cells may accelerate the arthritic process in rheumatoid arthritis.[Abstract] [Full Text] [Related] [New Search]