These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Origin of endocrine-metabolic changes in the weanling rat ventromedial syndrome. Author: Bernardis LL, Goldman JK. Journal: J Neurosci Res; 1976; 2(2):91-116. PubMed ID: 950680. Abstract: Destruction of the ventromedial hypothalamic nuclei (VMN) in the weanling rat without injury to the median eminence results in a series of somatic, endocrine, and metabolic changes that are characterized by normal food and water intake but decreased linear growth, normal body weight but increased carcass fat and reduced carcass protein, lean body mass, and water. The endocrine alterations comprise hyperinsulinemia in the face of normoglycemia, hypertriglyceridemia and hypercholesterolemia and reduced growth hormone levels. The metabolic changes include greater oxidation of glucose and incorporation into lipid and reduced palmitate oxidation but increased incorporation into lipid. Weanling rats with VMN lesions are normophagic in absolute terms, relative to body weight and per metabolic unit, but their nocturnal feeding and weight gain cycles are disrupted and their locomotor activity is reduced. The VMN are involved in the long-term control of feeding - as in the mature rat - as shown by intragastric preloading studies and dietary density manipulation, glucose preference tests and intraperitoneal injections with glucose. Hyperinsulinemia and hypertriglyceridemia are present four days after the VMN operation in the presence of subnormal food intake and plasma glucose levels. Manipulations of the fat content of the diet revealed that the hyperlipidemia is of both endogenous and exogenous origin and that lipoprotein lipase is increased; a 48-hour fast reduced the hyperlipidemia to control levels, however. This suggests that weanling VMN rat tissue may have an impaired ability to take up circulating lipid. An increased incorporation of glycerol into lipid may be due to induction of glycerokinase by hyperinsulinemia. Adipose tissue of weanling VMN rats showed glycerokinase by hyperinsulinemia. Adipose tissue of weanling VMN rats showed neither depressed lipolysis nor diminished lipolytic activity per milligram of tissue protein. Glucose oxidation and incorporation into adipose tissue is increased in several tissues in vitro and there is enhanced glucose disappearance from plasma and incorporation into tissue lipids in vivo. These changes develop within a short time after lesion production and persist at least partially up to six months: glucose utilization in liver increases already four hours after the operation whereas it takes 72 hours to commence in adipose tissue. Insulin resistance is not apparent either in vivo or in vitro. The decreased growth hormone levels are not critical to the metabolic changes, nor is the hyperinsulinemia totally necessary. The metabolic changes also appear on several different types of diet and persist with fasting. The latter does not reduce insulin sensitivity of VMN rat tissues, wheras it does so in normal rats. Mature rats developed the same metabolic changes even in the absence of hyperphagia. The metabolic alterations can be blocked by pharmacologic doses of glucocorticoids, but are enhanced by the administration of estrogen...[Abstract] [Full Text] [Related] [New Search]