These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones. Author: Waters DJ, Allen TG. Journal: J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):453-69. PubMed ID: 9508809. Abstract: 1. Ionotropic glutamate receptor-mediated responses were recorded from rat magnocellular basal forebrain neurones under voltage clamp from a somatically located patch-clamp pipette. Currents were recorded from both acutely dissociated neurones and neurones maintained in culture for up to 6 weeks. 2. Non-NMDA and NMDA receptor-mediated events could be distinguished pharmacologically using the selective agonists (S)-alpha-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA), and antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (AP5). 3. Responses to rapid application of AMPA displayed pronounced and rapid desensitization. Responses to kainate showed no desensitization. Steady-state EC50 values for AMPA and kainate were 2.7 +/- 0.4 microM (n = 5) and 138 +/- 25 microM (n = 10), respectively. Cyclothiazide markedly increased current amplitude of responses to both agonists, whereas concanavalin A had no clear effect on either response. The selective AMPA receptor antagonist GYKI 53655 inhibited responses to kainate with an IC50 of 1.2 +/- 0.08 microM (n = 5) at -70 mV. These data strongly suggest that AMPA receptors are the predominant non-NMDA receptors expressed by basal forebrain neurones. 4. At -70 mV, approximately 6 % of control current amplitude remained, at a maximally effective concentration of GYKI 53655. This residual response displayed desensitization, was insensitive to cyclothiazide and was potentiated by concanavalin A, suggesting that it was mediated by a kainate receptor. 5. Current-voltage relationships for non-NMDA receptor-mediated currents were obtained from both nucleated patches pulled from neurones in culture and from acutely dissociated neurones. With 30 microM spermine in the recording pipette, currents frequently displayed double-rectification characteristic of non-NMDA receptors with high Ca2+ permeabilities. Ca2+ permeability, relative to Na+ and Cs+, was investigated using constant field theory. The measured Ca2+ to Na+ permeability coefficient ratio was 0.26-3.6; median, 1.27 (n = 15). 6. Current flow through non-NMDA receptors was inhibited by Ca2+, Cd2+ and Co2+ ions. At a holding potential of -70 mV, a maximally effective concentration of Cd2+ (> 30 mM) reduced current amplitude by approximately 90 %, with an IC50 of 44 microM. In six out of seven cells tested, block by Cd2+ was voltage sensitive. 7. Ca2+ permeability of many of the non-NMDA receptors expressed by magnocellular basal forebrain neurones may underlie the unusual sensitivity of cholinergic basal forebrain neurones to non-NMDA receptor-mediated excitotoxicity.[Abstract] [Full Text] [Related] [New Search]