These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. Author: Chaytor AT, Evans WH, Griffith TM. Journal: J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817. Abstract: 1. The contribution of gap junctions to endothelium-dependent relaxation was investigated in isolated rabbit conduit artery preparations pre-constricted by 10 microM phenylephrine (PhE). 2. Acetylcholine (ACh) relaxed the thoracic aorta by approximately 60 % and the superior mesenteric artery (SMA) by approximately 90 %. A peptide possessing sequence homology with extracellular loop 2 of connexin 43 (Gap 27, 300 microM) inhibited relaxation by approximately 40 % in both artery types. Gap 27 also attenuated the endothelium-dependent component of the relaxation induced by ATP in thoracic aorta but did not modify force development in response to PhE. 3. NG-nitro-L-arginine methyl ester (L-NAME, 300 microM), an inhibitor of NO synthase, attenuated ACh-induced relaxation by approximately 90 % in the aorta but only by approximately 40 % in SMA (P < 0.05). Residual L-NAME-insensitive relaxations were almost abolished by 300 microM Gap 27 in aorta and inhibited in a concentration-dependent fashion in SMA (approximately 50 % at 100 microM and approximately 80 % at 10 mM). Gap 27 similarly attenuated the endothelium-dependent component of L-NAME-insensitive relaxations to ATP in aorta. 4. Responses to cyclopiazonic acid, which stimulates endothelium-dependent relaxation through a receptor-independent mechanism, were also attenuated by Gap 27, whereas this peptide exerted no effect on the NO-mediated relaxation induced by sodium nitroprusside in preparations denuded of endothelium. 5. ACh-induced relaxation of 'sandwich' mounts of aorta or SMA were unaffected by Gap 27 but completely abolished by L-NAME. 6. We conclude that direct heterocellular communication between the endothelium and smooth muscle contributes to endothelium-dependent relaxations evoked by both receptor-dependent and -independent mechanisms. The inhibitory effects of Gap 27 peptide do not involve homocellular communication within the vessel wall or modulation of NO release or action.[Abstract] [Full Text] [Related] [New Search]