These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A). Author: Brown AM, Hope AG, Lambert JJ, Peters JA. Journal: J Physiol; 1998 Mar 15; 507 ( Pt 3)(Pt 3):653-65. PubMed ID: 9508827. Abstract: 1. A human recombinant homo-oligomeric 5-HT3 receptor (h5-HT3A) expressed in a human embryonic kidney cell line (HEK 293) was characterized using the whole-cell recording configuration of the patch clamp technique. 2. 5-HT evoked transient inward currents (EC50 = 3.4 microM; Hill coefficient = 1.8) that were blocked by the 5-HT3 receptor antagonist ondansetron (IC50 = 103 pM) and by the non-selective agents metoclopramide (IC50 = 69 nM), cocaine (IC50 = 459 nM) and (+)-tubocurarine (IC50 = 2.8 microM). 3. 5-HT-induced currents rectified inwardly and reversed in sign (E5-HT) at a potential of -2.2 mV. N-Methyl-D-glucamine was finitely permeant. Permeability ratios PNa/PCs and PNMDG/PCs were 0.90 and 0.083, respectively. 4. Permeability towards divalent cations was assessed from measurements of E5-HT in media where Ca2+ and Mg2+ replaced Na+. PCa/PCs and PMg/PCs were calculated to be 1.00 and 0.61, respectively. 5. Single channel chord conductance (gamma) estimated from fluctuation analysis of macroscopic currents increased with membrane hyperpolarization from 243 fS at -40 mV to 742 fS at -100 mV. 6. Reducing [Ca2+]o from 2 to 0.1 mM caused an increase in the whole-cell current evoked by 5-HT. A concomitant reduction in [Mg2+]o produced further potentiation. Fluctuation analysis indicates that a voltage-independent augmentation of gamma contributes to this phenomenon. 7. The data indicate that homo-oligomeric receptors composed of h5-HT3A subunits form inwardly rectifying cation-selective ion channels of low conductance that are permeable to Ca2+ and Mg2+.[Abstract] [Full Text] [Related] [New Search]