These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter. Author: Kim EL, Peng H, Esparza FM, Maltchenko SZ, Stachowiak MK. Journal: Nucleic Acids Res; 1998 Apr 01; 26(7):1793-800. PubMed ID: 9512554. Abstract: Tyrosine hydroxylase (TH) is expressed specifically in catecholaminergic cells. We have identified a novel regulatory sequence in the upstream region of the bovine TH gene promoter formed by a dyad symmetry element (DSE1;-352/-307 bp). DSE1 supports TH promoter activity in TH-expressing bovine adrenal medulla chromaffin (BAMC) cells and inhibits promoter activity in non-expressing TE671 cells. DNase I footprinting of relaxed TH promoter DNA showed weak binding of nuclear BAMC cell proteins to a short sequence in the right DSE1 arm. In BAMC cells, deletion of the right arm markedly reduced the expression of luciferase from the TH promoter. However, deletion of the left DSE1 arm or its reversed orientation (RevL) also inactivated the TH promoter. In supercoiled TH promoter, DSE1 assumes a cruciform-like conformation i.e., it binds cruciform-specific 2D3 antibody, and S1 nuclease-cleavage and OsO4-modification assays have identified an imperfect cruciform extruded by the DSE1. DNase I footprinting of supercoiled plasmid showed that cruciformed DSE1 is targeted by nuclear proteins more efficiently than the linear duplex isomer and that the protected site encompasses the left arm and center of DSE1. Our results suggest that the disruption of intrastrand base-pairing preventing cruciform formation and protein binding to DSE1 is responsible for its inactivation in DSE1 mutants. DSE1 cruciform may act as a target site for activator (BAMC cells) and repressor (TE671) proteins. Its extrusion emerges as a novel mechanism that controls cell-specific promoter activity.[Abstract] [Full Text] [Related] [New Search]