These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mouse 17 beta-hydroxysteroid dehydrogenase type 2 mRNA is predominantly expressed in hepatocytes and in surface epithelial cells of the gastrointestinal and urinary tracts.
    Author: Mustonen MV, Poutanen MH, Kellokumpu S, de Launoit Y, Isomaa VV, Vihko RK, Vihko PT.
    Journal: J Mol Endocrinol; 1998 Feb; 20(1):67-74. PubMed ID: 9513083.
    Abstract:
    17 beta-Hydroxysteroid dehydrogenase (17HSD) type 2 efficiently catalyzes the conversion of the high activity 17 beta-hydroxy forms of sex steroids into less potent 17-ketosteroids. In the present study in situ hybridization was utilized to analyze the cellular localization of 17HSD type 2 expression in adult male and female mice. The data indicate that 17HSD type 2 mRNA is expressed in several epithelial cell layers, including both absorptive and secretory epithelia as well as protective epithelium. In both males and females, strong expression of 17HSD type 2 was particularly detected in epithelial cells of the gastrointestinal and urinary tracts. The mRNA was expressed in the stratified squamous epithelium of the esophagus, and surface epithelial cells of the stomach, small intestine and colon. The hepatocytes of the liver and the thick limbs of the loops of Henle in the kidneys, as well as the epithelium of the urinary bladder, also showed strong expression of 17HSD type 2 mRNA in both male and female mice. In the genital tracts, low 17HSD type 2 expression was detected in the seminiferous tubules, the uterine epithelial cells and the surface epithelium of the ovary. Expression of the mRNA was also detected in the sebaceous glands of the skin. The results indicate that in both male and female mice, 17HSD type 2 is expressed mainly in the various epithelial cell types of the gastrointestinal and urinary tracts, and therefore suggest a role for the enzyme in steroid inactivation in a range of tissues and cell types not considered as classical sex steroid target tissues.
    [Abstract] [Full Text] [Related] [New Search]