These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell-mediated biotransformation of S-nitrosoglutathione. Author: Gordge MP, Addis P, Noronha-Dutra AA, Hothersall JS. Journal: Biochem Pharmacol; 1998 Mar 01; 55(5):657-65. PubMed ID: 9515576. Abstract: Spontaneous release of nitric oxide (NO) from S-nitrosothiols cannot explain their bioactivity, suggesting a role for cellular metabolism or receptors. Using immortalised cells and human platelets, we have identified a cell-mediated mechanism for the biotransformation of the physiological S-nitrosothiol compound S-nitrosoglutathione (GSNO) into nitrite. We suggest the name "GSNO lyase" for this activity. GSNO lyase activity varied between cell types, being highest in a fibroblast cell line and lowest in platelets. In NRK 49F fibroblasts, GSNO lyase mediated a saturable, GSNO concentration-dependent accumulation of nitrite in conditioned medium, which was inhibited both by transition metal chelators, and by subjecting cells to oxidative stress using a combination of the thiol oxidant diamide and Zn2+, a glutathione reductase inhibitor. Activity was resistant, however, to both acivicin, an inhibitor of gamma-glutamyl transpeptidase (EC 2.3.2.2), and to ethacrynic acid, an inhibitor of Pi class glutathione-S-transferases (EC 2.5.1.18), thus neither of these enzymes could account for NO release. Although GSNO lyase does not explain the platelet-selective pharmacological properties of GSNO, cellular biotransformation suggests therapeutic avenues for targeted delivery of NO to other tissues.[Abstract] [Full Text] [Related] [New Search]