These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes. Author: Van Roy N, Laureys G, Van Gele M, Opdenakker G, Miura R, van der Drift P, Chan A, Versteeg R, Speleman F. Journal: Eur J Cancer; 1997 Oct; 33(12):1974-8. PubMed ID: 9516836. Abstract: Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell lines carry 1;17 translocations. Similar translocations were also observed in primary tumours. Together with the occurrence of a constitutional 1;17 translocation in a neuroblastoma patient, these observations suggest a particular role for these chromosome re-arrangements in the development of neuroblastoma. Apart from the loss of distal 1p-material, these translocations invariably lead to extra copies of 17q. This also suggested a possible role for genes on 17q in neuroblastoma tumorigenesis. Further support for this hypothesis comes from the observation that in those cell lines without 1;17 translocations, other chromosome 17q translocations were present. These too lead to extra chromosome 17q material. Molecular analysis of 1;17 translocation breakpoints revealed breakpoint heterogeneity both on 1p and 17q, which suggests the involvement of more than 2 single genes on 1p and 17q. The localisation of the different 1p-breakpoints occurring in 1;17 translocations in neuroblastoma are discussed with respect to the recently identified candidate tumor suppressor regions and genes on 1p. In this study, we focused on the molecular analysis of the 17q breakpoints in 1;17 translocations. Detailed physical mapping of the constitutional 17q breakpoint allowed for the construction of a YAC contig covering the breakpoint. Furthermore, a refined position was determined for a number of 17q breakpoints of 1;17 translocations found in neuroblastoma cell lines. The most distal 17q breakpoint was identified in cell line UHG-NP and mapped telomeric to cosmid cCI17-1049 (17q21). This suggests that genes involved in a dosage-dependent manner in the development of neuroblastoma map in the distal segment 17q22-qter. Future studies aim at the molecular cloning of 1;17 translocation breakpoints and at deciphering the mechanisms leading to 1;17 translocations and possibly to the identification of neuroblastoma genes at or in the vicinity of these breakpoints.[Abstract] [Full Text] [Related] [New Search]