These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endogenous nitric oxide facilitates striatal dopamine and glutamate efflux in vivo: role of ionotropic glutamate receptor-dependent mechanisms. Author: West AR, Galloway MP. Journal: Neuropharmacology; 1997; 36(11-12):1571-81. PubMed ID: 9517428. Abstract: We have investigated the influence of the nitric oxide synthase (NOS) substrate, NG-hydroxy-L-arginine (H-ARG) on dopamine (DA) and glutamate (GLU) efflux in vivo using concentric microdialysis probes implanted in the anterior-medial striatum of chloral hydrate-anesthetized rats. Intrastriatal infusion of H-ARG (100 microM, 200 microM, or 1 mM for 120 min) increased DA efflux in a dose-dependent fashion. The facilitatory effect of H-ARG (1 mM) on DA efflux was abolished following pretreatment (80 min) with the constitutive NOS inhibitor 7-nitroindazole (7-NI, 10 microM) but unaffected by L-NG(1-iminoethyl) lysine (100 microM) infusion. As both H-ARG (1 mM) and the NO-generator (+/-)-S-nitroso-N-acetylpenicillamine (1 mM) were observed to increase GLU efflux concurrently with the effect on DA efflux, we evaluated the potential intermediary role of GLU in NO-facilitated DA efflux using ionotropic GLU receptor antagonists. Local infusion of dizocilpine maleate (10 microM) or (+/-)-2-amino-3-[3-(carboxymethoxy)-5-methyl-isoxazol-4-yl] propionic acid (100 microM), attenuated the H-ARG (1 mM)-induced elevation of extracellular DA levels. Conversely, similar treatment with the kainate receptor antagonist d-gamma-glutamyl-aminomethanesulfonic acid did not alter H-ARG-induced DA efflux. To evaluate the regulatory influence of striatal NO on NMDA receptor activation, NMDA (100 microM) was co-perfused with either H-ARG (2 mM) or 7-NI (10 microM). While co-perfusion with 7-NI potentiated NMDA-induced DA efflux, similar treatment with H-ARG (2 mM) abolished the effect. These results demonstrate that endogenous NO production, stimulated via H-ARG-dependent activation of type 1 NOS, enhances striatal DA efflux via an increase in glutamatergic tone on ionotropic GLU-receptors. At higher levels of NOS activation (following H-ARG (2 mM) or NMDA infusion), NO may block glutamatergic neurotransmission via inhibition of NMDA receptor function.[Abstract] [Full Text] [Related] [New Search]