These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Class III beta-tubulin isotype (beta III) in the adrenal medulla: III. Differential expression of neuronal and glial antigens identifies two distinct populations of neuronal and glial-like (sustentacular) cells in the PC12 rat pheochromocytoma cell line maintained in a Gelfoam matrix system. Author: Katsetos CD, Herman MM, Balin BJ, Vinores SA, Hessler RB, Arking EJ, Karkavelas G, Frankfurter A. Journal: Anat Rec; 1998 Mar; 250(3):351-65. PubMed ID: 9517852. Abstract: BACKGROUND: The rat PC12 pheochromocytoma cell line provides an established system for the study of neuronal differentiation. To our knowledge, glial differentiation has not been reported in this cell line. METHODS: We have studied, by immunohistochemistry and immunoblotting, the presence of neuronal cytoskeletal antigens [class III beta-tubulin isotype (beta III), microtubule associated proteins MAP2, MAP1B and tau, and different neurofilament (NF) protein components], and synaptophysin in comparison with the glial fibrillary acidic protein (GFAP) and S-100 protein in the PC12 cell line. In three different experiments, PC12 cells were maintained in a three-dimensional gelatin foam (Gelfoam) matrix system for up to 34 days with and without treatment with 1 mM dibutyryl cyclic (dc)AMP. Immunohistochemistry was performed on explants ranging from 2 to 32 days-in vitro, which were fixed in either Bouin's solution, 70% ethanol, or 10% neutral-buffered formalin and embedded in paraffin. Immunoblotting was performed on Gelfoam explants with a panel of antibodies against all aforementioned neuronal and glial markers. Additional immunoblot experiments using anti-GFAP and anti-beta III monoclonal antibodies in cell suspensions and homogenates from PC12 monolayer cultures were carried out to compare growth conditions in relation to the expression of these proteins. RESULTS: Beta III and MAP2 were demonstrated by immunohistochemistry and immunoblotting of PC12 explants maintained for up to 32 days in Gelfoam matrices with and without treatment with dcAMP. Intense filamentous and granular beta III staining of PC12 cells was observed in dcAMP-treated cultures concomitant with neuronal morphologic alterations (neuritogenesis and ganglionic phenotype). In untreated cultures, beta III staining was present in less differentiated cells, as well in cells undergoing neuritic development. The neuronal phenotype of PC12 cells was confirmed by staining for MAP2, tau, and NF proteins, as well as for synaptophysin. The presence of beta III, MAP2, MAP1B, tau, and NF proteins was confirmed by immunoblotting. Clusters of GFAP-positive and S-100 protein-positive spindle cells, phenotypically distinct from the chromaffin-like or neuronal cells, were demonstrated in Gelfoam explants at 5-30 days in vitro. In 30-day-old cultures treated with dcAMP, there was strong filamentous GFAP and diffuse S-100 protein staining in an increased number of sustentacular-like PC12 cells. GFAP staining was corroborated by immunoblotting of explants maintained under identical conditions in vitro. In contrast, immunoblots performed on homogenates from PC12 suspension and monolayer cultures were GFAP-negative. CONCLUSIONS: Neuronal and glial-like, presumed sustentacular, phenotypes were demonstrated in PC12 cells grown in Gelfoam matrices with and without treatment with dcAMP for up to 34 days. To our knowledge, the occurrence of glial differentiation in the PC12 line is a hitherto unreported finding. Adult rat medullary sustentacular cells are known to express S-100 and GFA proteins (Suzuki and Kachi, Kaibogaku Zasshi-Anat 70(2): 130-139, 1995), and the organ culture system employed in our study may well have favored this direction of differentiation.[Abstract] [Full Text] [Related] [New Search]