These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of vestibular nerve irregular afferents to viewing distance-related changes in the vestibulo-ocular reflex.
    Author: Chen-Huang C, McCrea RA.
    Journal: Exp Brain Res; 1998 Mar; 119(1):116-30. PubMed ID: 9521542.
    Abstract:
    The contribution of irregular vestibular afferents to viewing distance-related changes in the angular vestibulo-ocular reflex (AVOR) and combined angular and linear VOR (CVOR) was studied in squirrel monkeys trained to fixate earth-stationary targets that were near (10 cm) and distant (90-170 cm) from their eyes. Perilymphatic anodal galvanic currents were used to reversibly silence irregular vestibular afferents for periods of 4-5 s during the AVOR and CVOR evoked by 0.5- to 4-Hz sinusoidal rotations (6-20 degrees/s peak velocity) or 250-400 degrees/s2 acceleration steps. The direction and magnitude of linear translation were changed by positioning the monkeys at different distances off the axis of turntable rotation. The effects of irregular afferent galvanic ablation (GA) on viewing distance-related changes in the AVOR were studied in four animals. Viewing distance-related changes in the AVOR could not always be evoked and were frequently small in amplitude. GA reduced viewing distance-related change in the AVOR by an average of 64% when it was present. Thus vestibular irregular afferents appear to play an important and necessary role in viewing distance-related changes in the AVOR - on those occasions when the changes occur. Viewing distance-related changes in the CVOR were large and reliably evoked. GA had very little effect on the gain or phase of viewing distance-related changes in the CVOR, although the viewing distance-related CVOR responses of individual central vestibular neurons were affected. We conclude that irregular afferents probably contribute to central signal processing related to both the AVOR and the CVOR, but the signals carried by these afferents are only essential for viewing distance-related changes in AVOR.
    [Abstract] [Full Text] [Related] [New Search]