These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydropathic analysis and mutagenesis of the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). cGMP versus cAMP substrate selectivity. Author: Turko IV, Francis SH, Corbin JD. Journal: Biochemistry; 1998 Mar 24; 37(12):4200-5. PubMed ID: 9521742. Abstract: The mechanism of discrimination between cGMP and cAMP in the catalytic site of the cGMP-binding cGMP-specific phosphodiesterase (BTPDE5A1 or PDE5) has been investigated. A hydropathy analysis of the catalytic domains of different families of PDEs suggests that substrate selectivity of PDEs could result from the pattern of hydrophobic/hydrophilic residues in a short segment surrounding a conserved Glu that has been shown to be critical for cGMP binding in the catalytic domain of PDE5. This implies that the substrate selectivity of PDE5 could be altered by replacing the residues within this segment that are conserved in cGMP-specific PDEs with the conserved residues in the corresponding positions of cAMP-specific PDEs. The A769T/L771R, W762L/Q765Y, and W762L/Q765Y/A769T/L771R mutant PDE5s were expressed in High Five cells, and their substrate selectivities were compared with that of wild-type PDE5. The results indicate that the substrate-binding site of PDE5 contains positive elements for accommodating cGMP, as well as negative elements that discriminate against binding of cAMP, and that the cGMP/cAMP selectivity of PDE5 can be shifted 106-fold by substituting four residues of PDE5 with the residues in the corresponding positions of PDE4.[Abstract] [Full Text] [Related] [New Search]