These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional analysis of the CAAT box in the major late promoter of the subgroup C human adenoviruses.
    Author: Song B, Young CS.
    Journal: J Virol; 1998 Apr; 72(4):3213-20. PubMed ID: 9525647.
    Abstract:
    Comparisons among sequences predicted to encode the major late promoter (MLP) of adenoviruses from a wide variety of host species show that an inverted CAAT box is among the most highly conserved transcription elements found in the putative MLPs. The high degree of conservation suggests that the CAAT box plays an important role in the function of the MLP in vivo, an idea supported by a previous mutational analysis of the core CCAAT sequence. To address the importance of the CAAT box, in terms both of quantitative levels of transcription and of specificity, a further set of mutations was created and examined in the context of the viral genome. One mutation, CAAT5, contains individual changes at five positions, four of which correspond to invariant residues in a CAAT box consensus derived either by computer analysis or empirically. The CAAT5 mutation had no discernible phenotype by itself but when coupled with the previously described USF0 mutation, which disrupts binding of the upstream stimulating factor (USF) but is otherwise phenotypically silent, gave rise to virus with a severe replication deficiency. Nuclear run-on assays showed that transcription initiation at the mutant MLP was significantly reduced compared with that of the wild type or the virus containing CAAT5 alone. Replication of the double mutant was lower than that of the previously described USF0::CCCAT virus, suggesting that the additional mutations in the CAAT box had further lowered the binding of transcription factor CP1 (also called CBF, NF-Y). Replacement of the CAAT box by an ATF binding site or an OCT1 binding site had no phenotypic effect in an otherwise wild-type background, but replacement in a USF0::CCCAT background led to only partial restoration of the wild-type phenotype. The failure to restore the functional redundancy normally exhibited by the CAAT box and the proximal upstream activating element is consistent with the idea that in the adenovirus MLP the CAAT box is preferred over others as the distal transcriptional element.
    [Abstract] [Full Text] [Related] [New Search]