These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Author: Hamman BD, Hendershot LM, Johnson AE. Journal: Cell; 1998 Mar 20; 92(6):747-58. PubMed ID: 9529251. Abstract: Secretory proteins are cotranslationally translocated across the mammalian ER membrane through an aqueous pore in the translocon while the permeability barrier is maintained by a tight ribosome-membrane junction. The lumenal end of the pore is also blocked early in translocation. Extraction of soluble lumenal proteins from microsomes and reconstitution with purified proteins demonstrate, by fluorescence collisional quenching, that BiP seals the lumenal end of this pore. BiP also seals translocons that are assembled but are not engaged in translocation. These ribosome-free translocons have smaller pores (9-15 A diameter versus 40-60 A in functioning translocons) and are generated when ribosomes dissociate from functioning translocons with large pores. BiP therefore maintains the permeability barrier by sealing both nontranslocating and newly targeted translocons.[Abstract] [Full Text] [Related] [New Search]