These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphoinositide signaling in rat inner medullary collecting duct. Author: Chou CL, Rapko SI, Knepper MA. Journal: Am J Physiol; 1998 Mar; 274(3):F564-72. PubMed ID: 9530273. Abstract: Previous studies in microdissected rat inner medullary collecting duct (IMCD) segments have demonstrated that carbachol, arginine vasopressin (AVP), and the V2 vasopressin receptor agonist 1-desamino-8-D-arginine vasopressin (DDAVP) induce a similar increase in intracellular Ca2+. The present study tested whether these agents activate the phosphoinositide hydrolysis pathway. In intracellular inositol 1,4,5-trisphosphate (IP3) measurements, we found that IMCD suspensions incubated with AVP or DDAVP (10(-8) M) displayed no measurable increase in IP3, whereas IMCD suspensions incubated with the muscarinic cholinergic agent carbachol (100 microM) induced a significant increase in IP3 production. Similarly, carbachol, but not AVP or DDAVP, induced a significant increase in membrane-associated protein kinase C (PKC) enzyme activity. To test what specific PKC isoforms are activated by carbachol in IMCD, we first characterized the PKC isoforms in IMCD suspensions by immunoblotting using affinity-purified antibodies against different PKC isoforms. We identified one classic PKC isoform (alpha), three novel PKC isoforms (delta, epsilon, eta), and one atypical PKC isoform (zeta) in the IMCD. Carbachol induced a cytosol-to-membrane translocation of the PKC-eta isoform but did not alter the distribution of any other isoform. In contrast, AVP had no effect on the distribution of any PKC isoform tested. These data, taken together, demonstrate that carbachol is an activator of the phosphoinositide hydrolysis pathway in IMCD but do not demonstrate signaling via this pathway in response to AVP or DDAVP. These results suggest that the previously observed AVP-stimulated Ca2+ mobilization in IMCD may be due to a mechanism other than activation of the phosphoinositide hydrolysis pathway.[Abstract] [Full Text] [Related] [New Search]