These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibitory effect of magnesium ion on the human placental alkaline phosphatase-catalyzed reaction in a reverse micellar system. Author: Hung HC, Huang TM, Chang GG. Journal: J Protein Chem; 1998 Feb; 17(2):99-106. PubMed ID: 9535271. Abstract: Human placental alkaline phosphatase is a membrane-anchored protein. Entrapping the enzyme into a reverse micellar vesicle mimics the in vivo conditions and allows examination of the properties of the enzyme. Placental alkaline phosphatase is enzymatically active in Aerosol-OT/isooctane reverse micelles. Substantially different kinetic behavior of the enzyme has been observed in aqueous or reverse micellar systems. In aqueous solution, Mg2+ is a nonessential activator of the enzyme. In the experiments described in the present report Mg2+ was found to be an inhibitor for the enzyme in reverse micelles. This inhibition is presumably due to a time-dependent conformational change of the enzyme molecule, which resulted in a curvature in the recorder tracings of the enzyme assays. The Mg2+-induced conformational change of the enzyme was completely prevented by phosphate and partially reserved by EDTA. High concentrations of Zn2+ also strongly inhibited enzyme activity in both aqueous and reverse micellar solvent systems, presumably by occupying the Mg2+ (M3) site of the enzyme. However, binding of Zn2+ at the M3 site did not cause conformational change of the enzyme and the enzyme assay tracing was linear. The M3 site of the enzyme is proposed to have a modulatory role in vivo using magnesium ion as the modulator.[Abstract] [Full Text] [Related] [New Search]