These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The C terminus of beta-tubulin regulates vinblastine-induced tubulin polymerization.
    Author: Rai SS, Wolff J.
    Journal: Proc Natl Acad Sci U S A; 1998 Apr 14; 95(8):4253-7. PubMed ID: 9539723.
    Abstract:
    Oligoanions such as sodium triphosphate or GTP prevent and/or reverse vinblastine-induced polymerization of tubulin. We now show that the anions of glutamate-rich extreme C termini of tubulin are similarly involved in the regulation of the vinblastine effect. Cleavage of the C termini by limited proteolysis with subtilisin enhances vinblastine-induced tubulin polymerization and abolishes the anion effect. Only the beta-tubulin C terminus needs to be removed to achieve these changes and the later cleavage of the alpha-tubulin C terminus has little additional effect. In fact, vinblastine concentrations >20 microM block cleavage of the alpha-tubulin C terminus in the polymer, whereas cleavage of the beta-tubulin C terminus proceeds unimpeded over the time used. The vinblastine effect on tubulin polymerization is also highly pH-dependent between pH 6.5 and 7.5; this is less marked, but not absent, after subtilisin treatment. A working model is proposed wherein an anionic domain proximal to the extreme C terminus must interact with a cationic domain to permit vinblastine to promote polymerization. Both exogenous and extreme C-terminal anions compete for the cationic domain with the proximal anionic domain to prevent vinblastine-induced polymerization. We conclude that the electrostatic regulation of tubulin polymerization induced by vinblastine resides primarily in the beta-tubulin C terminus but that additional regulation proximal in the tubulin molecule also plays a role.
    [Abstract] [Full Text] [Related] [New Search]