These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sheath proteins: synthesis, secretion, degradation and fate in forming enamel.
    Author: Uchida T, Murakami C, Wakida K, Dohi N, Iwai Y, Simmer JP, Fukae M, Satoda T, Takahashi O.
    Journal: Eur J Oral Sci; 1998 Jan; 106 Suppl 1():308-14. PubMed ID: 9541241.
    Abstract:
    We investigated expression of ameloblastin and sheathlin, recently cloned enamel matrix proteins from the rat and pig, in forming enamel immunocytochemically and immunochemically, using region-specific antibodies. The results obtained from the rat and pig were essentially the same. Antibodies which recognize the N-terminal region stained the secretory machinery of the secretory ameloblast and the entire thickness of the enamel matrix, especially the peripheral region of the enamel rod. Immunostained protein bands were observed near 65 or 70 kDa and below 20 kDa. C-terminal-specific antibodies stained the secretory machinery of the ameloblast and the immature enamel adjacent to the secretion sites. Immunostained protein bands were found ranging from 25 to 70 kDa. Antibodies which recognize a region in the protein just prior to the C-terminal region stained the cis-side of the Golgi apparatus but not the enamel matrix. Immunostained protein bands were observed of about 55 kDa. These results suggest that post-translational and post-secretory modifications of ameloblastin and sheathlin are similar to each other, and further showed that their cleaved N-terminal polypeptides concentrate in the prism sheath. We propose that sheathlin and ameloblastin share the same role in amelogenesis and should be classified as sheath proteins.
    [Abstract] [Full Text] [Related] [New Search]