These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anaerobic degradation of glycerol by desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Author: Qatibi AI, Bennisse R, Jana M, Garcia JL. Journal: Curr Microbiol; 1998 May; 36(5):283-90. PubMed ID: 9541565. Abstract: The degradation of glycerol by Desulfovibrio carbinolicus and Desulfovibrio fructosovorans was tested in pure culture with sulfate and in coculture with Methanospirillum hungatei. Desulfovibrio carbinolicus degraded glycerol into 3-hydroxypropionate with the formation of sulfide in pure culture and methane in the coculture. The maximum growth rates were 0.063 h-1 in pure culture and 0.014 h-1 in coculture (corresponding growth yields: 8.9 and 6.0 g dry weight/mol glycerol). With D. fructosovorans, the pathway of glycerol degradation depended upon the terminal electron acceptor. Acetate and sulfide were produced in the presence of sulfate, while 3-hydroxypropionate and methane were formed by the syntrophic association with M. hungatei. The maximum growth rates were 0.057 h-1 in pure culture and 0.020 h-1 in coculture (corresponding growth yields: 8.9 and 6.0 g dry weight/mol glycerol). In a medium containing both glycerol and 1,2-propanediol but no sulfate, D. carbinolicus and D. fructosovorans degraded both substrates. A drop in the concentration of 1,3-propanediol was observed, and propionate and n-propanol production was recorded. Putative biochemical pathways of 1,2-propanediol degradation by D. carbinolicus and D. fructosovorans indicated that the enzymes involved in this metabolism are present only when the strains are grown on a mixture of 1,2-propanediol and glycerol without sulfate.[Abstract] [Full Text] [Related] [New Search]