These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cell growth inhibition by a novel vitamin K is associated with induction of protein tyrosine phosphorylation.
    Author: Ni R, Nishikawa Y, Carr BI.
    Journal: J Biol Chem; 1998 Apr 17; 273(16):9906-11. PubMed ID: 9545333.
    Abstract:
    We have shown that a synthetic vitamin K analog, 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone or compound 5 (Cpd 5), potently inhibits cell growth and suggested that the analog exerts its effects mainly via sulfhydryl arylation rather than redox cycling. Since protein-tyrosine phosphatases (PTPases), which have pivotal roles in many cellular functions, have a critical cysteine in their active site, we have proposed PTPases as likely targets for Cpd 5. To test this hypothesis, we examined the effects of Cpd 5 on protein tyrosine phosphorylation of cellular proteins and on the activity of PTPases. We found that Cpd 5 rapidly induced protein tyrosine phosphorylation in a human hepatocellular carcinoma cell line (Hep3B) at growth inhibitory doses, and the effect was blocked by thiols but not by non-thiol antioxidants or tyrosine kinase inhibitors. Cpd 5 inhibited PTPase activity, which was also significantly antagonized by reduced glutathione. Furthermore, the well studied PTPase inhibitor orthovanadate also induced protein tyrosine phosphorylation and growth inhibition in Hep3B cells. These results suggest that inhibition of cellular PTPases by sulfhydryl arylation and subsequent perturbation of protein tyrosine phosphorylation may be involved in the mechanisms of Cpd 5-induced cell growth inhibition.
    [Abstract] [Full Text] [Related] [New Search]