These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 2-Methoxy-4-nitroaniline and its isomers induce cytochrome P4501A (CYP1A) enzymes with different selectivities in the rat liver. Author: Degawa M, Nakayama M, Konno Y, Masubuchi K, Yamazoe Y. Journal: Biochim Biophys Acta; 1998 Mar 02; 1379(3):391-8. PubMed ID: 9545601. Abstract: We reported previously that 2-methoxy-4-nitroaniline (2-MeO-4-NA) is a selective inducer of cytochrome P4501A2 (CYP1A2) in the rat liver, and its molecular size is the smallest among known CYP1A2-selective inducers. In the present study, a structure-activity relationship on the CYP1A2-selective induction has been investigated using isomeric nitroanisidines and their related chemicals. Western blot analyses revealed that the chemicals removed a substituent (amino, methoxyl or nitro group) from a 2-MeO-4-NA molecule had no capacity for inducing CYP1A enzymes in rat livers. On the other hand, isomeric nitroanisidines such as 2-MeO-4-NA, 2-MeO-5-NA and 4-MeO-2-NA induced both CYP1A2 and CYP1A1 enzymes with different selectivities. As judged from the induced levels of CYP1A proteins, 2-MeO-4-NA (CYP1A2/CYP1A1 ratio; 9.5) and 4-MeO-2-NA (0.3) were the most selective inducers of CYP1A2 and CYP1A1, respectively, among the isomeric nitroanisidines (0.44 mmol/kg) used. The induced level of CYP1A2 protein was in the order 2-MeO-4-NA > 2-MeO-5-NA > 4-MeO-2-NA, although no significant difference was observed on their CYP1A2 mRNA level. On the contrary, increases in the levels of CYP1A1 mRNA and protein were in the order 4-MeO-2-NA > 2-MeO-5-NA > 2-MeO-4-NA. The present findings indicate that all three substituents (amino, methoxyl and nitro groups) are necessary components of nitroanisidines for induction of CYP1A enzymes, and also show that regio-isomeric positions of these substituents determine the selectivity in the induction of CYP1A enzymes.[Abstract] [Full Text] [Related] [New Search]