These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation.
    Author: Zheng-Fischhöfer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E.
    Journal: Eur J Biochem; 1998 Mar 15; 252(3):542-52. PubMed ID: 9546672.
    Abstract:
    AT100 is a monoclonal antibody highly specific for phosphorylated Tau in Alzheimer paired helical filaments. Here we show that the epitope is generated by a complex sequence of sequential phosphorylation, first of Ser199, Ser202 and Thr205 (around the epitope of antibody AT8), next of Thr212 by glycogen synthase kinase (GSK)-3beta (a proline-directed kinase), then of Ser214 by protein kinase A (PKA). Conversely, if Ser214 is phosphorylated first it protects Thr212 and the Ser-Pro motifs around the AT8 site against phosphorylation, and the AT100 epitope is not formed. The generation of the AT100 epitope requires a conformation of tau induced by polyanions such as heparin, RNA or poly(Glu), conditions which also favor the formation of paired helical filaments. The Alzheimer-like phosphorylation can be induced by brain extracts. In the extract, the kinases responsible for generating the AT100 epitope are GSK-3beta and PKA, which can be inhibited by their specific inhibitors LiCl and RII, respectively. A cellular model displaying the reaction with AT100 is presented by Sf9 insect cells transfected with Tau. Knowledge of the events and kinases generating the AT100 epitope in cells might allow us to study the degeneration of the cytoskeleton in Alzheimer's disease.
    [Abstract] [Full Text] [Related] [New Search]