These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of mant-adenosine nucleotides and magnesium with kinesin.
    Author: Cheng JQ, Jiang W, Hackney DD.
    Journal: Biochemistry; 1998 Apr 14; 37(15):5288-95. PubMed ID: 9548760.
    Abstract:
    Displacement of the fluorescent substrate analogue methylanthraniloyl ADP (mant-ADP) from kinesin by excess ATP results in a biphasic fluorescent transient. The pH and microtubule dependence of the rates and amplitudes indicates that the two phases are produced by release of bound mant-ADP, with an excess of the 3'-isomer, followed by the subsequent relaxation of the free 2'- and 3'-isomers to their equilibrium distribution. The first phase for release of mant-ADP is accelerated by microtubules and occurs at the same rate as ADP release measured using [32P]ADP. The second phase is subject to base catalysis and occurs at the same rate as the isomerization of isolated 2'- or 3'-mant-ATP over a 100-fold range of rates. The bound mant-ADP isomers undergo isomerization rapidly when bound to kinesin at pH 8.2, whereas mant-ADP isomers interconvert only slowly when bound to myosin. No fluorescence resonance energy transfer occurs between the single tryptophan in the kinesin neck domain and bound mant-ADP, but efficient energy transfer does occur from protein tyrosine groups. The rate of mant-ADP release in the absence of microtubules is minimal (0.005 s-1) at pH 7-8, 2 mM Mg2+, and 25 mM KCl but is accelerated at lower pH (0.04 s-1 at pH 5.5) and either lower or higher [KCl] (0.01 and 0. 06 s-1 at 0 and 800 mM KCl, respectively). The microtubule-stimulated rate of ADP release is accelerated at low pH and inhibited by high concentrations of monovalent salts. Reduction of the free Mg2+ by addition of excess EDTA increases the release of mant-ADP from E.MgADP to 0.03 s-1. This acceleration at low Mg2+ likely represents sequential release of Mg2+ at 0.03 s-1 followed by rapid release of ADP, as the rate of ADP release from Mg-free E.ADP is fast (>0.5 s-1). At high Mg2+, rebinding of Mg2+ to E.ADP forces release of ADP from the E.MgADP complex at 0.005 s-1.
    [Abstract] [Full Text] [Related] [New Search]