These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury.
    Author: Zalups RK, Barfuss DW.
    Journal: J Am Soc Nephrol; 1998 Apr; 9(4):551-61. PubMed ID: 9555656.
    Abstract:
    Mechanisms involved in the renal uptake of inorganic mercury were studied in rats administered a nontoxic 0.5 mumol/kg intravenous dose of inorganic mercury with or without 2.0 mumol/kg cysteine, homocysteine, or N-acetylcysteine. The renal disposition of mercury was studied 1 h after treatment in normal rats and rats that had undergone bilateral ureteral ligation. In addition, the disposition of mercury (including the urinary and fecal excretion of mercury) was evaluated 24 h after treatment. In normal rats, coadministering inorganic mercury plus cysteine or homocysteine caused a significant increase in the renal uptake of mercury 1 h after treatment. The enhanced renal uptake of mercury was due to increased uptake of mercury in the renal outer stripe of the outer medulla and/or renal cortex. Ureteral ligation caused reductions in the renal uptake of mercury in all groups except for the one treated with inorganic mercury plus N-acetylcysteine. Thus, it appears that virtually all of the mercury taken up by the kidneys of the normal rats treated with inorganic mercury plus N-acetylcysteine occurred at the basolateral membrane. Urinary excretory data also support this notion, in that the rate of excretion of inorganic mercury was greatest in the rats treated with inorganic mercury plus N-acetylcysteine. Our data also indicate that uptake of inorganic mercury in the kidneys of rats treated with inorganic mercury plus cysteine occurred equally at both luminal and basolateral membranes. In addition, the renal uptake of mercury in rats treated with inorganic mercury plus homocysteine occurred predominantly at the basolateral membrane with some component of luminal uptake. The findings of the present study confirm that there are at least two distinct mechanisms involved in the renal uptake of inorganic mercury, with one mechanism located on the luminal membrane and the other located on the basolateral membrane. Our findings also show that cysteine and homologs of cysteine, when coadministered with inorganic mercury, greatly influence the magnitude and/or site of uptake of mercuric ions in the kidney.
    [Abstract] [Full Text] [Related] [New Search]