These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.
    Author: Askew GN, Marsh RL.
    Journal: J Exp Biol; 1998 May; 201(Pt 10):1527-40. PubMed ID: 9556536.
    Abstract:
    The force-velocity relationship has frequently been used to predict the shortening velocity that muscles should use to generate maximal net power output. Such predictions ignore other well-characterized intrinsic properties of the muscle, such as the length-force relationship and the kinetics of activation and deactivation (relaxation). We examined the effects of relative shortening velocity on the maximum net power output (over the entire cycle) of mouse soleus muscle, using sawtooth strain trajectories over a range of cycle frequencies. The strain trajectory was varied such that the proportion of the cycle spent shortening was 25, 50 or 75 % of the total cycle duration. A peak isotonic power output of 167 W kg-1 was obtained at a relative shortening velocity (V/Vmax) of 0.22. Over the range of cyclical contractions studied, the optimal V/Vmax for power production ranged almost fourfold from 0.075 to 0.30, with a maximum net power output of 94 W kg-1. The net power output increased as the proportion of the cycle spent shortening increased. Under conditions where the strain amplitude was high (i.e. low cycle frequencies and strain trajectories where the proportion of time spent shortening was greater than that spent lengthening), the effects of the length-force relationship reduced the optimal V/Vmax below that predicted from the force-velocity curve. At high cycle frequencies and also for strain trajectories with brief shortening periods, higher rates of activation and deactivation with increased strain rate shifted the optimal V/Vmax above that predicted from the force-velocity relationship. Thus, the force-velocity relationship alone does not accurately predict the optimal V/Vmax for maximum power production in muscles that operate over a wide range of conditions (e.g. red muscle of fish). The change in the rates of activation and deactivation with increasing velocity of stretch and shortening, respectively, made it difficult to model force accurately on the basis of the force-velocity and length-force relationships and isometric activation and deactivation kinetics. The discrepancies between the modelled and measured forces were largest at high cycle frequencies.
    [Abstract] [Full Text] [Related] [New Search]