These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA.
    Author: Hermann T, Westhof E.
    Journal: J Mol Biol; 1998 Mar 13; 276(5):903-12. PubMed ID: 9566195.
    Abstract:
    A variety of drugs inhibit biological key processes by binding to a specific RNA component. We focus here on the well-analysed hammer-head ribozyme RNA that is inhibited by aminoglycoside antibiotics, a process considered as a paradigm for studying drug/RNA interactions. With insight gained from molecular dynamics simulations of the ribozyme in the presence of Mg2+ identified by crystallography and of aminoglycosides in solution, a general model for aminoglycoside binding to RNA is proposed. A striking structurally based complementarity between the charged ammonium groups of the aminoglycosides and the metal binding sites in the hammerhead was uncovered. Despite dynamical flexibility of the aminoglycosides, several of the intramolecular distances between the charged ammonium groups of the drugs were found to be rather constant. Intramolecular ammonium distances of the aminoglycosides span ranges similar to the interionic distances between Mg2+ in the hammerhead. Successful docking of aminoglycosides to the hammerhead ribozyme could be achieved by positioning the ammonium groups at the sites occupied by Mg2+. The covalently linked ammonium groups of the aminoglycosides are thus able to complement in space the negative electrostatic potential created by a three-dimensional RNA fold. Consequently, it is suggested that aminoglycoside-derived sugars could constitute a basic set of yardstick synthons ideal for rational and combinatorial synthesis of drugs targeted at biologically relevant RNA folds.
    [Abstract] [Full Text] [Related] [New Search]