These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use of a hemoglobin-trapping approach in the determination of nitric oxide in in vitro and in vivo systems.
    Author: Balcioglu A, Watkins CJ, Maher TJ.
    Journal: Neurochem Res; 1998 May; 23(5):815-20. PubMed ID: 9566622.
    Abstract:
    We describe methods for measuring the release of nitric oxide (NO) derived from organic nitrates in vitro, using triple wavelength and difference spectrophotometry in the presence and absence of concentric microdialysis probes. These methods are based on the ability of NO to oxidize oxyhemoglobin (OxyHb) to methemoglobin (MetHb) quantitatively in aqueous solution. Isosorbide dinitrate (ISDN), a thiol-dependent organic nitrate, increased MetHb concentration in 45 min from 2.47 +/- 0.47 to 4.15 +/- 0.12 microM (p < 0.05) and decreased OxyHb concentration from 2.13 +/- 0.35 to 0.33 +/- 0.26 microM (p < 0.05) at 37 degrees C. At 27 degrees C, the OxyHb concentration was not significantly altered (2.04 +/- 0.23 to 1.60 +/- 0.04 microM) by ISDN, nor was the MetHb concentration (from 2.68 +/- 0.50 to 2.59 +/- 0.25 microM). Sodium nitroprusside (SNP), a thiol-independent organic nitrate, increased MetHb concentrations in 30 min from 4.21 +/- 0.26 to 6.00 +/- 0.56 microM (p < 0.05) at 37 degrees C, and from 4.23 +/- 0.39 to 5.90 +/- 0.43 microM (p < 0.01) at 27 degrees C. SNP also decreased OxyHb concentrations in 30 min from 1.99 +/- 0.32 to 0.13 +/- 0.12 microM (p < 0.01) at 37 degrees C, and from 2.25 +/- 0.31 to 0.13 +/- 0.09 microM (p < 0.01) at 27 degrees C. Difference spectrophometry indicated that 0.25-5 mM SNP significantly increased NO production in a dose-dependent fashion. This hemoglobin-trapping technique was also useful in quantifying the concentrations of NO released from SNP in aqueous solution in vitro, using concentric microdialysis probes. The NO concentration following exposure to SNP was 530 +/- 50 nM, as determined using the difference spectrophotometric technique. To demonstrate the applicability of this technique to in vivo microdialysis, we implanted concentric microdialysis probes into hippocampus and cerebellum of conscious and anesthetized rats. Baseline NO concentrations in hippocampus of conscious and anesthetized rats were 11 +/- 2 nM and 23 +/- 9 nM, respectively, while in the cerebellum NO concentrations were 28 +/- 9 nM and 41 +/- 20 nM, respectively. These results demonstrate that microdialysis using a novel hemoglobin-trapping technique possesses adequate sensitivity to measure the NO levels produced from organic nitrates in aqueous solutions, and further document the applicability of this approach to in vivo systems.
    [Abstract] [Full Text] [Related] [New Search]