These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lung polymers in Z alpha1-antitrypsin deficiency-related emphysema.
    Author: Elliott PR, Bilton D, Lomas DA.
    Journal: Am J Respir Cell Mol Biol; 1998 May; 18(5):670-4. PubMed ID: 9569237.
    Abstract:
    Patients with alpha1-antitrypsin (alpha1-AT) deficiency are at risk of developing early-onset panlobular basal emphysema, which has been attributed to uncontrolled proteolytic activity within the lung. Severe genetic deficiency of alpha1-AT is most commonly due to the Z mutation (342Glu--> Lys), which results in a block in alpha1-AT processing within the endoplasmic reticulum of hepatocytes. The retained alpha1-AT forms inclusions, which are associated with neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Our recent studies have shown that the accumulation of alpha1-AT is due to the Z mutation perturbing the structure of alpha1-AT to allow polymer formation, with a unique linkage between the reactive center loop of one alpha1-AT molecule and the A beta-pleated sheet of a second. The detection of loop-sheet polymers and other conformations of alpha1-AT in the lungs of patients with emphysema has been technically difficult. We show here that transverse urea-gradient-gel (TUG) electrophoresis and Western blot analysis may be used to characterize conformations of alpha1-AT in dilute samples of bronchoalveolar lavage fluid (BALF). This technique was used to demonstrate loop-sheet polymers in the lungs of patients with Z alpha1-AT-deficiency-related emphysema. Polymers were the predominant conformational form of alpha1-AT in BALF from the lungs of two of five Z homozygotes with emphysema, but were not detectable in any of 13 MM, MS, or MZ alpha1-AT controls. Because alpha1-AT loop-sheet polymers are inactive as proteinase inhibitors, this novel conformational transition will further reduce the levels of functional proteinase inhibitor in the lungs of the Z alpha1-AT homozygote, and so exacerbate tissue damage.
    [Abstract] [Full Text] [Related] [New Search]