These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylinositol 3-kinase-mediated endocytosis of renal Na+, K+-ATPase alpha subunit in response to dopamine.
    Author: Chibalin AV, Zierath JR, Katz AI, Berggren PO, Bertorello AM.
    Journal: Mol Biol Cell; 1998 May; 9(5):1209-20. PubMed ID: 9571250.
    Abstract:
    Dopamine (DA) inhibition of Na+,K+-ATPase in proximal tubule cells is associated with increased endocytosis of its alpha and beta subunits into early and late endosomes via a clathrin vesicle-dependent pathway. In this report we evaluated intracellular signals that could trigger this mechanism, specifically the role of phosphatidylinositol 3-kinase (PI 3-K), the activation of which initiates vesicular trafficking and targeting of proteins to specific cell compartments. DA stimulated PI 3-K activity in a time- and dose-dependent manner, and this effect was markedly blunted by wortmannin and LY 294002. Endocytosis of the Na+,K+-ATPase alpha subunit in response to DA was also inhibited in dose-dependent manner by wortmannin and LY 294002. Activation of PI 3-K generally occurs by association with tyrosine kinase receptors. However, in this study immunoprecipitation with a phosphotyrosine antibody did not reveal PI 3-K activity. DA-stimulated endocytosis of Na+, K+-ATPase alpha subunits required protein kinase C, and the ability of DA to stimulate PI 3-K was blocked by specific protein kinase C inhibitors. Activation of PI 3-K is mediated via the D1 receptor subtype and the sequential activation of phospholipase A2, arachidonic acid, and protein kinase C. The results indicate a key role for activation of PI 3-K in the endocytic sequence that leads to internalization of Na+,K+-ATPase alpha subunits in response to DA, and suggest a mechanism for the participation of protein kinase C in this process.
    [Abstract] [Full Text] [Related] [New Search]