These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation of a periplasmic molecular chaperone-like protein of Rhodobacter sphaeroides f. sp. denitrificans that is homologous to the dipeptide transport protein DppA of Escherichia coli.
    Author: Matsuzaki M, Kiso Y, Yamamoto I, Satoh T.
    Journal: J Bacteriol; 1998 May; 180(10):2718-22. PubMed ID: 9573158.
    Abstract:
    A periplasmic protein has been found to prevent aggregation of the acid-unfolded dimethyl sulfoxide reductase (DMSOR), the periplasmic terminal reductase of dimethyl sulfoxide respiration in the phototroph Rhodobacter sphaeroides f. sp. denitrificans, in a manner similar to that of the Escherichia coli chaperonin GroEL (Matsuzaki et al., Plant Cell Physiol. 37:333-339, 1996). The protein was isolated from the periplasm of the phototroph. It had a molecular mass of 58 kDa and had no subunits. The sequence of 14 amino-terminal residues of the protein was completely identical to that of the periplasmic dipeptide transport protein (DppA) of E. coli. The 58-kDa protein prevented aggregation to a degree comparable to that of GroEL on the basis of monomer protein. The 58-kDa protein also decreased aggregation of guanidine hydrochloride-denatured rhodanese, a mitochondrial matrix protein, during its refolding upon dilution. The 58-kDa protein is a kind of molecular chaperone and could be involved in maintaining unfolded DMSOR, after secretion of the latter into the periplasm, in a competent form for its correct folding.
    [Abstract] [Full Text] [Related] [New Search]