These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three-dimensional structure of HIV-1 Rev protein filaments.
    Author: Watts NR, Misra M, Wingfield PT, Stahl SJ, Cheng N, Trus BL, Steven AC, Williams RW.
    Journal: J Struct Biol; 1998 Jan; 121(1):41-52. PubMed ID: 9573619.
    Abstract:
    The HIV-1 Rev protein facilitates the export of incompletely spliced and unspliced viral mRNAs from the nucleus. Rev polymerizes into two types of filaments in vitro. In the presence of RNA, Rev forms poorly ordered structures, while in the absence of RNA it polymerizes into regular hollow filaments. We have determined the helical structure of the latter filaments by analysis of cryo-electron micrographs, taking into account STEM measurements of mass-per-unit-length. They are made up of Rev dimers, arranged in a six-start helix, with 31 dimers in 2 turns, a pitch angle of 45 degrees, and an interstrand spacing of 3.8 nm. Three-dimensional reconstruction at 2.1 nm resolution reveals a smooth outer surface and a featured inner surface, with outer and inner diameters of approximately 14.8 and approximately 10.4 nm, respectively. The Rev dimer has a "top-hat" shape with a cylinder approximately 3.2 nm in diameter and approximately 2.2 nm high, pointing inward: the thinner rim areas pack together to form the filament wall. Raman spectroscopy shows polymerized Rev to have approximately 54% alpha-helix and 20-24% beta-sheet content. Electron microdiffraction of aligned filaments reveals a broad meridional reflection at approximately (0.51 nm(-1, suggesting approximate alignment of the alpha-helices with the filament axis. Based on these data, a molecular model for the Rev filament is proposed.
    [Abstract] [Full Text] [Related] [New Search]