These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exposure to prenatal nicotine transiently increases neuronal nicotinic receptor subunit alpha7, alpha4 and beta2 messenger RNAs in the postnatal rat brain.
    Author: Shacka JJ, Robinson SE.
    Journal: Neuroscience; 1998 Jun; 84(4):1151-61. PubMed ID: 9578402.
    Abstract:
    This study determined the effects of prenatal nicotine exposure (2 mg/kg/day) in Sprague Dawley CD rats via subcutaneously implanted osmotic minipumps, during gestational days 7-21, on postnatal levels of neuronal nicotinic receptor alpha4, alpha7 and beta2 subunit messenger RNAs. Northern analysis of postnatal day 1, 7, 14 and 28 hippocampal/septal and cortical total RNA using alpha-[32P]dCTP-labeled alpha4, alpha7 and beta2 complementary DNA probes identified a single (5.7-kb) alpha7 messenger RNA, three (2.4-, 3.8- and 8.0-kb) alpha4 messenger RNAs and four (3.7-, 5.0-, 7.5- and 10.0-kb) beta2 messenger RNAs. In comparison to prenatal saline, prenatal nicotine produced several significantly higher messenger RNA levels (cortical: 5.7-kb alpha7, 2.4-, 3.8- and 8.0-kb alpha4, 10.0-kb beta2; hippocampal/septal: 2.4- and 8.0-kb alpha4); these increases occurred predominantly on, but were not restricted to, postnatal day 14. Effects of nicotine were generally resolved by postnatal day 28. Collapsing the data across sex and age, a significant treatment effect indicated that hippocampal/septal and cortical 8.0-kb alpha4 messenger RNA levels and 10.0-kb beta2 messenger RNA levels were significantly higher following prenatal nicotine exposure. This is the first study indicating that prenatal nicotine produces alterations in developing postnatal rat neuronal nicotinic receptor messenger RNA levels, possibly by premature stimulation of neuronal nicotinic receptors. These results further implicate the teratogenic potential of nicotine in postnatal neuronal development.
    [Abstract] [Full Text] [Related] [New Search]