These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Author: Mellquist JL, Kasturi L, Spitalnik SL, Shakin-Eshleman SH. Journal: Biochemistry; 1998 May 12; 37(19):6833-7. PubMed ID: 9578569. Abstract: Many eukaryotic proteins are modified by Asn-linked (N-linked) glycosylation. The number and position of oligosaccharides added to a protein by the enzyme oligosaccharyltransferase can influence its expression and function. N-Linked glycosylation usually occurs at Asn residues in Asn-X-Ser/Thr sequons where X not equal Pro. However, many Asn-X-Ser/Thr sequons are not glycosylated or are glycosylated inefficiently. Inefficient glycosylation at one or more Asn-X-Ser/Thr sequons in a protein results in the production of heterogeneous glycoprotein products. These glycoforms may differ from one another in their level of expression, stability, antigenicity, or function. The signals which control the efficiency of N-linked glycosylation at individual Asn residues have not been fully defined. In this report, we use a site-directed mutagenesis approach to investigate the influence of the amino acid at the position following a sequon (the Y position, Asn-X-Ser/Thr-Y). Variants of rabies virus glycoprotein containing a single Asn-X-Ser/Thr sequon at Asn37 were generated. Variants were designed with each of the twenty common amino acids at the Y position, with either Ser or Thr at the hydroxy (Ser/Thr) position. The core glycosylation efficiency of each variant was quantified using a cell-free translation/glycosylation system. These studies reveal that the amino acid at the Y position is an important determinant of core glycosylation efficiency.[Abstract] [Full Text] [Related] [New Search]