These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Author: Oatey PB, Van Weering DH, Dobson SP, Gould GW, Tavaré JM. Journal: Biochem J; 1997 Nov 01; 327 ( Pt 3)(Pt 3):637-42. PubMed ID: 9581537. Abstract: Insulin stimulates glucose uptake into its target cells by a process which involves the translocation of the GLUT4 isoform of glucose transporter from an intracellular vesicular compartment(s) to the plasma membrane. The step(s) at which insulin acts in the vesicle trafficking pathway (e.g. vesicle movement or fusion with the plasma membrane) is not known. We expressed a green-fluorescent protein-GLUT4 (GFP-GLUT4) chimaera in 3T3 L1 adipocytes. The chimaera was expressed in vesicles located throughout the cytoplasm and also close to the plasma membrane. Insulin promoted a substantial translocation of GFP-GLUT4 to the plasma membrane. Time-lapse confocal microscopy demonstrated that the majority of GFP-GLUT4-containing vesicles in the basal state were relatively static, as if tethered (or attached) to an intracellular structure. A proportion (approx. 5%) of the vesicles spontaneously lost their tether, and were observed to move rapidly within the cell. Other vesicles appear to be tethered only on one edge and were observed in a rapid stretching motion. The data support a model in which GLUT4-containing vesicles are tightly tethered to an intracellular structure(s), and indicate that a primary site of insulin action must be to release these vesicles, allowing them to then translocate to and fuse with the plasma membrane.[Abstract] [Full Text] [Related] [New Search]