These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic effects of oral prostacyclin analogue on thromboxane A2 and prostacyclin metabolites in pulmonary hypertension. Author: Ichida F, Uese K, Hamamichi Y, Hashimoto I, Tsubata S, Fukahara K, Murakami A, Miyawaki T. Journal: Acta Paediatr Jpn; 1998 Feb; 40(1):14-9. PubMed ID: 9583194. Abstract: Abnormal biosynthesis of thromboxane and prostacyclin has been implicated in patients with primary pulmonary hypertension and secondary pulmonary hypertension associated with congenital heart disease, and could be involved in the pathogenesis of pulmonary vascular disease. The chronic effects of an oral prostacyclin analogue, beraprost sodium, on thromboxane and prostacyclin biosynthesis and on pulmonary circulation were investigated in 15 children with pulmonary hypertension. The plasma concentrations of thromboxane B2 and 6-keto-prostaglandin F1 alpha were measured, as was the urinary excretion of 11-dehydro-thromboxane B2 and 2,3-dinor-6-keto-prostaglandin F1 alpha, which are stable metabolites of thromboxane A2 and prostacyclin, respectively. In patients with pulmonary hypertension, the plasma concentration of thromboxane B2 and the ratio of thromboxane B2 to 6-keto-prostaglandin F1 alpha were greater than in healthy controls: 210 +/- 49 versus 28 +/- 4 pg/mL (P < 0.05) and 32.6 +/- 8.9 versus 5.7 +/- 1.8 (P < 0.01), respectively. After 3 months of administration of beraprost, the plasma concentration of thromboxane B2 and the ratio of thromboxane B2 to 6-keto-prostaglandin F1 alpha were reduced significantly: 210 +/- 49 to 98 +/- 26 pg/mL (P < 0.01) and 32.6 +/- 8.9 to 18.0 +/- 6.7 (P < 0.05), respectively. In contrast, the plasma concentrations of 6-keto-prostaglandin F1 alpha in patients were slightly but not significantly higher than in controls, and did not change significantly after administration of beraprost. The concentrations of 11-dehydro-thromboxane B2 and 2,3-dinor-6-keto-prostaglandin F1 alpha in urine correlated significantly with thromboxane B2 and 6-keto-prostaglandin F1 alpha, respectively, in plasma. Beraprost improved the imbalance of thromboxane and prostacyclin biosynthesis and has a potential efficacy for preventing the progressive development of pathological changes in pulmonary vasculature.[Abstract] [Full Text] [Related] [New Search]