These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Agonist interactions with chimeric and mutant beta1- and beta3-adrenergic receptors: involvement of the seventh transmembrane region in conferring subtype specificity. Author: Granneman JG, Lahners KN, Zhai Y. Journal: Mol Pharmacol; 1998 May; 53(5):856-61. PubMed ID: 9584211. Abstract: beta1- and beta3-adrenergic receptors (AR) are the predominant beta-AR subtypes in adipocytes, and analysis of native and recombinant beta-AR has revealed several pharmacological and biochemical differences between these subtypes. This study used chimeric and mutated rat beta-AR expressed in Chinese hamster ovary cells to examine the basis of certain characteristic differences in the agonist properties of catecholamines and prototypic beta3-AR agonists. The exchange of sequence beyond transmembrane (TM) region 6 between the beta-AR subtypes had dramatic and reciprocal effects on the affinity and efficacy of the prototypic beta3-AR agonists BRL 37,344 and CL 316,243, without affecting the interactions with catecholamines. Mutation of Phe350 and Phe351 in TM7 of the beta1-AR to Ala and Leu found in the beta3-AR was sufficient to allow activation by prototypic beta3-AR agonists. Interestingly, this mutation did not affect catecholamine action and it did not impair the ability of propranolol to block the actions of isoproterenol or the selective beta3-AR agonists. beta1-AR containing beta3-AR sequence from predicted TM5 through TM6 exhibited reduced affinity for catecholamines without altering agonist potency, suggesting enhanced coupling efficiency. Inclusion of the homologous beta1-AR sequence in the beta3-AR, however, did not produce reciprocal effects. These results are the first to define a major determinant of beta3-AR subtype-selective agonism in TM7 and demonstrate that the determinants of selective phenethanolamines, catecholamines, and propranolol action are distinct.[Abstract] [Full Text] [Related] [New Search]