These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Participation of the 3'-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P. Author: Oh BK, Frank DN, Pace NR. Journal: Biochemistry; 1998 May 19; 37(20):7277-83. PubMed ID: 9585541. Abstract: Ribonuclease P (RNase P) contains a catalytic RNA that cleaves precursor tRNA (pre-tRNA) to form the mature 5'-end of tRNA. Previous kinetic analyses with mutant pre-tRNAs indicated that both C residues of the invariant 3'-terminal CCA form specific interactions with RNase P RNA that contribute to the energetics of substrate binding (1, 2). In the present study, we have used single-turnover kinetic analysis to investigate whether specific changes in the 3'-terminal CCA influence the rate of the chemical step through which enzyme-bound substrate is converted to product (k2). At optimal ionic strength (1.0 M NH4Cl, 25 mM MgCl2), deletion or substitution of the 3'-proximal C residue (CCA) reduced the rate of the chemical step of cleavage (k2) by 60-fold. Similar changes to the 5'-proximal C residue (CCA) or the 3'-terminal A residue (CCA) reduced k2 only a few fold. Each mutant substrate exhibited weakened affinity for Mg2+, as measured by Hill plots, and the severity of these defects correlated with the observed reductions in k2. Furthermore, elevated concentrations of Mg2+ partially, but not completely, suppress the k2 defects caused by deletion or substitution of the 3'-proximal C residue. We conclude that the 3'-CCA of pre-tRNA, particularly the 3'-proximal C residue, comprises part of the catalytic pocket formed in the pre-tRNA-RNase P complex and participates in the binding of Mg2+ ions that are essential for catalysis by RNase P RNA.[Abstract] [Full Text] [Related] [New Search]