These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cortical control of presynaptic inhibition of Ia afferents in humans. Author: Meunier S, Pierrot-Deseilligny E. Journal: Exp Brain Res; 1998 Apr; 119(4):415-26. PubMed ID: 9588776. Abstract: The effect of transcranial magnetic stimulation was investigated on presynaptic inhibition of Ia terminals in the human upper and lower limb. Presynaptic inhibition of Ia afferents was assessed by three different and independent methods: (1) heteronymous Ia facilitation of the H-reflex (assessing ongoing presynaptic inhibition of Ia afferents in the conditioning volley); (2) long-lasting inhibition of the H-reflex by a group I volley (D1 inhibition, assessing presynaptic inhibition on Ia afferents in the test volley); (3) measurement of the monosynaptic Ia peak evoked in single motor units by a homonymous or heteronymous volley (post stimulus time histogram method). The first two methods were used on the lower limb; the last two on the upper limb. Provided that the corticospinal volley and the explored Ia volley were directed to the same target motoneurones, cortical stimulation evoked significant and congruent changes: (1) In the lower limb, transcranial stimulation provided increased heteronymous Ia facilitation and decreased D1 inhibition, both of which suggest a decrease in presynaptic inhibition of Ia afferents; (2) in the upper limb, transcranial stimulation provided an increase in the radial-induced inhibition of the wrist flexor H-reflex and a decrease in the peak of monosynaptic Ia excitation in single units, both of which suggest an increase in presynaptic inhibition. Selectivity of corticospinal effects was explored by testing presynaptic inhibition of Ia afferents to soleus motoneurones and focusing the transcranial stimulation to excite preferentially different motor nuclei (soleus, quadriceps and tibialis anterior). A cortical-induced decrease in presynaptic inhibition of Ia afferents was seen when, and only when, cortical and peripheral Ia volleys were directed to the same motor nucleus.[Abstract] [Full Text] [Related] [New Search]