These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chromosome geometry and intraspecific genetic polymorphism in Gram-positive bacteria revealed by pulsed-field gel electrophoresis.
    Author: Leblond P, Decaris B.
    Journal: Electrophoresis; 1998 Apr; 19(4):582-8. PubMed ID: 9588806.
    Abstract:
    Pulsed-field gel electrophoresis (PFGE) proved to be a powerful approach to study bacterial genomics. The genome structure and genetic polymorphism of Gram-positive bacteria from the high G+C (Streptomyces) and low G+C (Streptococcus) groups have been studied. PFGE allowed the estimation of the size of their genome at about 8 Mbp and 1.8 Mbp, respectively, and to get an insight into their chromosome geometry. Thus, physical mapping of the genome of wild-type Streptomyces ambofaciens strains revealed the linearity of the 8 Mbp chromosomal DNA and its typical invertron structure, while the 1.8 Mbp chromosome of Streptococcus thermophilus was shown to be circular. These findings disproved the long-standing idea of universality of bacterial chromosome circularity. In addition, strains belonging to the species S. ambofaciens and S. thermophilus allowed us to characterize the genetic polymorphism at the intraspecific level. Within the S. thermophilus species, comparison of the physical maps showed a relative conservation of gene order as well as restriction sites along the chromosome. In contrast, variable loci were characterized that revealed localized genome rearrangements. The most spectacular of these corresponded to horizontal gene transfer events of sequences. In S. ambofaciens, the physical maps of three isolates pointed to the conservation of the genetic organization. However, a strong polymorphism was observed in the terminal regions of the linear chromosomal DNA. Previous PFGE studies in S. ambofaciens gave proof of a high structural instability of a limited region of the chromosome called unstable region (i.e., DNA rearrangements such as deletions and amplifications). These intraclonal rearrangements create an impressive intraspecific polymorphism of genome size and shape (linear or circular). In both organisms, the DNA rearrangements are restricted to particular regions of the chromosome.
    [Abstract] [Full Text] [Related] [New Search]