These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photophysics of the cationic 5,10,15,20-tetrakis (4-N-methylpyridyl) porphyrin bound to DNA, [poly (dA-dT)]2 and [poly (dG-dC)]2: interaction with molecular oxygen studied by porphyrin triplet-triplet absorption and singlet oxygen luminescence.
    Author: Kruk NN, Dzhagarov BM, Galievsky VA, Chirvony VS, Turpin PY.
    Journal: J Photochem Photobiol B; 1998 Mar; 42(3):181-90. PubMed ID: 9595707.
    Abstract:
    Interaction between molecular oxygen and the cationic free-base 5,10,15,20-tetrakis (4-N-methylpyridyl) porphyrin (H2TMpyP4+) complexed with [poly (dA-dT)]2, [poly (dG-dC)]2 and calf thymus DNA, has been monitored in air-saturated heavy water solutions through porphyrin triplet-triplet absorption and singlet oxygen luminescence. Three different rate constants of porphyrin triplet state quenching have been found which correspond to different accessibilities of molecular oxygen to porphyrins embedded in the duplexes. The longest triplet state lifetime (30 microseconds), found for porphyrin bound to [poly (dG-dC)]2, corresponds to molecules well protected from oxygen. This supports the hypothesis of an intercalative binding mode of the porphyrin between GC base-pairs ('type A' sites). The fraction fT delta of the porphyrin triplet states quenched by molecular oxygen with singlet oxygen generation, is unity. In [poly (dA-dT)]2-porphyrin complexes, two sites ('type B' and 'C' sites of interaction) are involved, yielding very different triplet state lifetimes (5.5 microseconds and 20.5 microseconds) and efficiencies of singlet oxygen generation (fT delta = 0.50 and 0.82). The fT delta decreases can likely be explained in terms of competition between energy and electron transfer from the porphyrin excited triplet state to molecular oxygen. All three types (A, B and C) of interaction sites can be expected in porphyrin-DNA complexes.
    [Abstract] [Full Text] [Related] [New Search]