These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of protein kinase C agonists on prostaglandin production and growth in human breast cancer cells.
    Author: Boorne AJ, Donnelly N, Schrey MP.
    Journal: Breast Cancer Res Treat; 1998 Mar; 48(2):117-24. PubMed ID: 9596483.
    Abstract:
    A regulatory role for protein kinase C (PKC) and eicosanoids has been implicated in the control of breast cancer cell growth and function. Here we report on the effects of the two PKC agonists 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and bryostatin 1 on arachidonic acid metabolism, prostaglandin E2 (PGE2) production, and growth in MDA MB 231 human breast cancer cells. TPA caused a dose-dependent increase in PGE2 production which was maximal at 100 nM and which was blocked in the presence of an equimolar concentration of bryostatin 1. Bryostatin 1 alone had no effect on PGE2 synthesis. Both TPA and bryostatin 1 stimulated arachidonic acid release and reduced fatty acid incorporation into phosphatidylinositol, their combined effect being less than additive in co-incubation. Interleukin-1beta (IL-1beta) induced a tenfold and twofold synergistic increase in PGE2 production in the presence of TPA (10 nM) and bryostatin 1 (10 nM) respectively. Bryostatin 1 caused a dose-dependent inhibition of the phorbol ester-potentiated IL-1beta response. Treatment of MDA MB 231 cells for 4 days with TPA (10 nM) or bryostatin 1 (10 nM) inhibited cell growth by 74% and 20% respectively. Co-treatment with both PKC agonists reversed the anti-proliferative effect of TPA to that seen with bryostatin 1 alone. In contrast the anti-proliferative action of ceramide, another PKC modulator, was unaffected in the presence of bryostatin 1. TPA also induced morphological changes in MDA MB 231 cells which were prevented by co-treatment with bryostatin 1. This study further supports a regulatory role for PKC in the control of eicosanoid synthesis and growth in human breast cancer cells. Although the findings are consistent with bryostatin 1 acting as an antagonist/weak agonist in relation to TPA action, the mechanistic basis for this differential action of TPA and bryostatin 1 is uncertain.
    [Abstract] [Full Text] [Related] [New Search]