These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Precisely full length, circularizable, complementary RNA: an infectious form of potato spindle tuber viroid.
    Author: Feldstein PA, Hu Y, Owens RA.
    Journal: Proc Natl Acad Sci U S A; 1998 May 26; 95(11):6560-5. PubMed ID: 9601006.
    Abstract:
    The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (-)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (-)strand RNAs, and attempts to initiate infection with multimeric (-)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (-)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (-)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (-)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (-)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (-)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (-)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (-)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (-)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.
    [Abstract] [Full Text] [Related] [New Search]