These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Author: O'Keefe LP, Movshon JA. Journal: Vis Neurosci; 1998; 15(2):305-17. PubMed ID: 9605531. Abstract: Extrastriate cortical area MT is thought to process behaviorally important visual motion signals. Psychophysical studies suggest that visual motion signals may be analyzed by multiple mechanisms, a "first-order" one based on luminance, and a "second-order" one based upon higher level cues (e.g. contrast, flicker). Second-order motion is visible to human observers, but should be invisible to first-order motion sensors. To learn if area MT is involved in the analysis of second-order motion, we measured responses to first- and second-order gratings of single neurons in area MT (and in one experiment, in area V1) in anesthetized, paralyzed macaque monkeys. For each neuron, we measured directional and spatio-temporal tuning with conventional first-order gratings and with second-order gratings created by spatial modulation of the flicker rate of a random texture. A minority of MT and V1 neurons exhibited significant selectivity for direction or orientation of second-order gratings. In nearly all cells, response to second-order motion was weaker than response to first-order motion. MT cells with significant selectivity for second-order motion tended to be more responsive and more sensitive to luminance contrast, but were in other respects similar to the remaining MT neurons; they did not appear to represent a distinct subpopulation. For those cells selective for second-order motion, we found a correlation between the preferred directions of first- and second-order motion, and weak correlations in preferred spatial frequency. These cells preferred lower temporal frequencies for second-order motion than for first-order motion. A small proportion of MT cells seemed to remain selective and responsive for second-order motion. None of our small sample of V1 cells did. Cells in this small population, but not others, may perform "form-cue invariant" motion processing (Albright, 1992).[Abstract] [Full Text] [Related] [New Search]